作者:卢文双 高级数据库内核研发
本文首发于 2016-11-21 09:43:07
架构
GreenPlum 采用 Share Nothing 的架构,良好的发挥了廉价 PC 的作用。自此 I/O 不在是 DW(data warehouse) 的瓶颈,相反网络的压力会大很多。但是 GreenPlum 的查询优化策略能够避免尽量少的网络交换。对于初次接触 GreenPlum 的人来说,肯定耳目一新。
查询优化器
GreenPlum 的 master 节点负责 SQL 解析和执行计划的生成,具体来说,查询优化器会将 SQL 解析成每个节点(segments)要执行的物理执行计划。
GreenPlum 采用的是基于成本的优化策略:如果有多条执行路径,会评估执行代价,找出代价最小、最有效率的一条。
不像传统的查询优化器,GreenPlum 的查询优化器必须全局的考虑整个集群,在每个候选的执行计划中考虑到节点间移动数据的开销。比如有 join,那么 join 是在各个节点分别进行的(每个节点只和自身数据做 join),所以它的查询很快。
查询计划包括了一些传统的操作,比如:扫描、Join、排序、聚合等等。
GreenPlum 中有三种数据的移动操作:
Broadcast Motion (N:N)
:广播数据。每个节点向其他节点广播需要发送的数据。Redistribute Motion (N:N)
:重新分布数据。利用 join 列数据的 hash 值不同,将筛选后的数据在其他 segment 重新分布。Gather Motion (N:1)
:聚合汇总数据。每个节点将 join 后的数据发到一个单节点上,通常是发到主节点 master 。
示例
示例 1
1 | explain select d.*,j.customer_id from data d join jd1 j on d.partner_id=j.partner_id where j.gmt_modified> current_date -80; |
执行计划需要自下而上分析:
- 在各个节点扫描自己的
jd1
表数据,按照条件过滤生成数据(记为rs
)。 - 各节点将自己生成的
rs
依次发送到其他节点。(Broadcast Motion (N:N)
) - 每个节点上的
data
表的数据,和各自节点上收到的rs
进行 join,这样能保证本机数据只和本机数据做 join 。 - 各节点将 join 后的结果发送给 master(
Gather Motion (N:1)
) 。
由上面的执行过程可以看出, GreenPlum 将 rs 给每个含有 data 表数据的节点都发了一份。
问:如果 rs
很大或者压根就没有过滤条件,会有什么问题?如何处理?
比如本例中的表 jd1
和表 data
的数据行数如下:
1 | => select count(*) from jd1; |
1 | => select count(*) from data; |
如果 rs
很大的话,广播数据时网络就会成为瓶颈。GreenPlum 的优化器很聪明,它是将小表广播到各个 segment 上,极大的降低网络开销。从这个例子能看出统计信息对于生成好的查询计划是何等重要。
示例 2
下面看一个复杂点的例子:
1 | select |
执行计划如下:
- 各个节点上同时扫描各自的 nation 表数据,将各 segment 上的 nation 数据向其他节点广播(
Broadcast Motion (N:N)
)。 - 各个节点上同时扫描各自 customer 数据,和收到的 nation 数据 join 生成
RS-CN
。 - 各个 segment 同时扫描自己 orders 表数据,过滤数据生成
RS-O
。 - 各个 segment 同时扫描自己 lineitem 表数据,过滤生成
RS-L
。 - 各个 segment 同时将各自
RS-O
和RS-L
进行 join,生成RS-OL
。注意此过程不需要Redistribute Motion (N:N)
重新分布数据,因为 orders 和 lineitem 的 distribute column 都是 orderkey,这就保证了各自需要 join 的对象都是在各自的机器上,所以 n 个节点就开始并行 join 了。 - 各个节点将自己在步骤 5 生成的
RS-OL
按照 cust-key 在所有节点间重新分布数据(Redistribute Motion (N:N)
,可以按照 hash 和 range 在节点间来重新分布数据,默认是 hash),这样每个节点都会有自己的RS-OL
。 - 各个节点将自己在步骤 2 生成的
RS-CN
和自己节点上的RS-OL
数据进行 join,又是本机只和本机的数据进行 join 。 - 聚合,排序,发往主节点 master 。
总结
Greenplum 如何处理和优化一张大表和小表的 join?
Greenplum 是选择将小表广播数据,而不是将大表广播。
举例说明:
表 A 有 10 亿条数据(empno<pk>,deptno,ename
),表 B 有 500 条数据(deptno<pk>,dname,loc
)
表 A 与表 B join on deptno
集群有 11 个节点:1 个 master,10 个 segment
按照正常的主键列 hash 分布,每个 segment 节点上只会有 1/10 的表 A 和 1/10 的表 B。
此时 GreenPlum 会让所有节点给其他节点发送各自所拥有的小表 B 的 1/10 的数据,这样就保证了 10 个节点上,每个节点都有一份完整的表 B 的数据。此时,每个节点上 1/10 的 A 只需要和自己节点上的 B 进行 join 就 OK。所以 GreenPlum 并行处理能力惊人的原因就在这里。
最终所有节点会将 join 的结果都发给主节点 master。
由该例可见统计信息十分重要,GreenPlum 通过统计信息来确定将哪张表进行(Broadcast Motion (N:N)
)。
另外,实际使用中还会出现列值倾斜的情况,比如 A 没有按照主键来 hash 分布,而是人为指定按照 deptno 的 hash 在各个节点上分布数据。若 A 中 80%的数据都是 sales(deptno=10)部门的,此时 10 个节点中,就会有一个节点上拥有了 10 亿 ×80% 的数据,就算是将表 B 广播到其他节点 也无济于事,因为计算的压力都集中在一台机器了。所以,必须选择合适的列进行 hash 分布。
欢迎关注我的微信公众号【数据库内核】:分享主流开源数据库和存储引擎相关技术。
标题 | 网址 |
---|---|
GitHub | https://dbkernel.github.io |
知乎 | https://www.zhihu.com/people/dbkernel/posts |
思否(SegmentFault) | https://segmentfault.com/u/dbkernel |
掘金 | https://juejin.im/user/5e9d3ed251882538083fed1f/posts |
CSDN | https://blog.csdn.net/dbkernel |
博客园(cnblogs) | https://www.cnblogs.com/dbkernel |